Emerging competencies

N⁰	Name of disciplines	Brief description of the discipline	Number of credits	Emerging competencies
		Cycle of general ed	lucation disc	ciplines University component
1	English - LNG108	Purpose: aimed at developing students' reading and listening skills and writing and speech skills, mastering pronunciation features and elementary vocabulary. Summary Fundamentals of English grammar, to lay a certain foundation for the student, which will allow him to improve his skills at the next stage of learning English by analyzing basic knowledge, using and memorizing the main grammatical rules.	10	Mastering the peculiarities of pronunciation and elementary vocabulary. Ability to communicate verbally on basic topics in English. The ability to communicate in writing on basic and professional topics in English using a dictionary. Ability to work with sources and scientific and technical information on engineering mechanics in English
2	Kazakh (Russian) language LNG104	Purpose: to teach you to understand texts on personal and professional topics containing the most frequent words and expressions; to be able to conduct a conversation on everyday topics; to describe your experiences; to express your opinion. Summary to give a lexical and grammatical minimum, to acquaint with typical communicative situations, to evaluate them correctly and to choose the appropriate model (strategy) of speech behavior;	10	Mastering the skills of reading, writing and understanding a sounding word on the basis of simultaneous mastery of the basics of grammar (phonetics, morphology and syntax) and word usage. Be able to conduct a conversation on everyday topics; describe your experience; express your opinion; present and evaluate the content of the book you read, the movie you saw. The ability to compose simple texts on well-known topics, including those related to professional activity.

		to teach the ability to use the language being studied, during the implementation of various types of speech activity.		
3	Information and Communicatio n technology- CSE677	Purpose: training in the use of modern information technologies in the field of professional activity. Summary The basic concepts of the architecture of computer systems, information and communication technologies and subject terminology. Software interfaces of operating systems. Working with data in a different view. Basic principles of information security. Data formats and multimedia content. Modern social, cloud and email platforms and ways to work with them. Algorithmization and programming methods for solving engineering problems.	5	Skill: working with interfaces of modern operating systems; work with modern application software for working with data of various nature and purpose; apply modern social, cloud, and email platforms to organize business processes; programming in an algorithmic programming language.
4	Modern history of Kazakhstan HUM100	Purpose: to familiarize students with the main achievements of the national historical science on the problems of the history of modern Kazakhstan, a comprehensive and systematic study of the main stages of the formation and development of Kazakh society. Summary The period from the beginning of the twentieth century to the present day. The national liberation movement of the Kazakh intelligentsia at the beginning of the XX century, the period of the creation of the Kazakh SSR, as well as the process of formation of society.	5	Skill: work with all kinds of historical sources; writing essays and scientific articles on the history of the Fatherland; to operate with historical concepts; to conduct a discussion. Possession of skills of independent analysis of historical facts, events and phenomena; public speech.

5	Philosophy HUM132	Purpose: formation of cognitive, operational, communicative, self- educational competencies for the development of adequate ideological guidelines in the modern world. Summary "Philosophy" is the basis for the formation of a holistic worldview. The main paradigms of philosophy and classical and postclassical traditions of philosophy. The connection of philosophy with the development of stable life orientations, the acquisition of the meaning of being as a special form of aniritual production	5	 Ability to analyze the history of the development of philosophical thought; to identify alternative ways of posing and solving ideological issues in the history of human development; to identify the main theoretical approaches in the relationship of a person with society.
6	Module of socio-political knowledge (sociology, political science)- HUM120	Purpose: formation of systematic knowledge about the political sphere of public life, consistent and comprehensive study of the origins and evolution of the political thought of the Kazakh people at the stage of its historical development, political heritage and its most prominent representatives.	3	 Ability to analyze the history of the development of philosophical thought; to identify alternative ways of posing and solving ideological issues in the history of human development; to identify the main theoretical approaches in the relationship of a person with society.
7	Module of socio-political knowledge (cultural studies, psychology) – HUM134	Purpose : to contribute to the formation of a holistic view of a person's personal characteristics as a factor of success in mastering and implementing their educational and professional activities. Summary Mental processes, properties and conditions of a person in various fields of human activity, interpersonal and social interactions, ways and forms of	5	 Ability to analyze the history of the development of philosophical thought; to identify alternative ways of posing and solving ideological issues in the history of human development; to identify the main theoretical approaches in the relationship of a person with society.

		their organization and changes when		
		Cycle of general e	ducation di	sciplines Elective component
8	Fundamentals of anti- corruption culture – HUM133	Purpose: The discipline "Fundamentals of anti-corruption culture" is an important component and belongs to the number of social and humanitarian disciplines. Summary This discipline reveals the general patterns of the emergence, development and functioning of the anti-corruption culture, and organically related other social phenomena and processes.	5	 Ability to analyze the history of the development of philosophical thought; to identify alternative ways of posing and solving ideological issues in the history of human development; to identify the main theoretical approaches in the relationship of a person with society.
9	Fundamentals of Entrepreneursh ip and Leadership – MNG488	Purpose: Students will study the theory and practice of entrepreneurship as a system of economic, organizational and legal relations of business structures. The discipline is aimed at revealing the content of entrepreneurial activity, career stages, qualities, competencies and responsibilities of a modern entrepreneur, as well as theoretical and practical business planning and economic expertise of business ideas.They will develop their leadership and teamwork skills.	5	The discipline is aimed at revealing the content of entrepreneurial activity, career stages, qualities, competencies and responsibilities of a modern entrepreneur, as well as theoretical and practical business planning and economic expertise of business ideas. They will develop their leadership and teamwork skills.
10	Ecology and life safety – CHE656	Purpose: formation of concepts and ideas about the inseparable unity of effective professional activity with the requirements of human safety and security and environmental protection. The issues of ecology, life safety in working conditions are considered.	5	Ability During the problematic seminars, the sources of atmospheric air pollution, surface, groundwater, soil and ways to solve environmental problems are considered; life safety in the technosphere; natural and man-made emergencies.

		Summary During the problematic seminars, the sources of atmospheric air pollution, surface, groundwater, soil and ways to solve environmental problems are considered; life safety in the technosphere; natural and man-made emergencies.		
11	Mathematics 1	Cycle of basi	c discipline	s University component
11	Mathematical Analysis I - MAT 169	The purpose of the discipline is to acquire theoretical and practical knowledge on the methods of introduction to analysis and differential calculus of functions of one variable Summary The discipline deals with differential and integral calculus; functions, continuity and differentiability of functions, the mean theorem, Taylor formulas; the study of functions. Investigation of monotonicity functions using the first derivative, the extremum point; investigation of convexity functions using the second derivative, the inflection point. Asymptotic behavior of functions.	5	The ability to find: the limits of continuous functions, the derivative of elementary functions of one variable, higher-order derivatives of a function of one variable; to investigate the functions of one variable using a derivative; to use for solving problems of mechanics and engineering.
12	Physics I: Molecular Physics. Thermodynami cs - PHY469	Purpose: formation of ideas about the fundamental laws of mechanics and thermodynamics, about the molecular structure of bodies. Summary Newton's laws of mechanics, applications in engineering. Molecular structures of bodies and their physical	5	Possession of a system of knowledge about the fundamental physical foundations and laws of mechanics and its theories, molecular physics and thermodynamics. The ability to apply this knowledge in solving problems of engineering mechanics.

		properties. Concepts and laws of thermodynamics.		
13	Linear Algebra and Analytic Geometry - MAT189	Purpose: to provide basic knowledge on methods of solving algebraic equations and systems of linear equations, to introduce methods of analytical geometry on the plane and in space. Summary Determinants. Algebraic equations: general theorems. Decomposition and division of polynomials. Systems of equations. Matrices, algebra of matrices. Analytical geometry on a plane. Analytical geometry in space.	5	Knowledge of methods of solving: algebraic equations of 1-4 degrees, systems of linear equations; operate with matrices. The ability to use the methods of analytical geometry to describe and study the problems of engineering mechanics.
14	Mathematical Analysis II- MAT170	Purpose: to provide basic knowledge on integral calculus of a function of one variable. Summary Fundamentals of integral calculus of a function of one variable: definite integrals, indefinite integrals, the main theorem of integral calculus, properties of integrals, integration methods. Application of integral calculus in mechanics and engineering.	5	The ability to calculate integrals from elementary functions of one variable; to find indefinite and definite integrals from elementary functions of one variable; to find the length of an arc, the area of a curved trapezoid; to use in solving problems of mechanics and engineering.
15	Physics II: Electricity and Magnetism. Nuclear physics - PHY471	Purpose: to provide basic knowledge on the laws of m electromagnetism and their conscious application in science and technology. Summary Laws of electricity and magnetism, static electricity, electric currents, magnetic phenomena.	5	Understanding of the physical essence of the laws of electromagnetism and the ability to apply them in engineering and engineering. The ability to use methods of physical research to solve problems of mechanics.

16	Mathematical analysis III - MAT171	Purpose: to provide basic knowledge on differential and integral calculus of functions of many variables. Summary Differential and integral calculus of a function of many variables. Curvilinear, double and multiple integrals; surface and volume integrals; mean value theorems; Fourier series and integrals. Applications of differential and integral calculus of functions of many variables in mechanics and engineering.	5	Ability to calculate: differentials of a function of many variables; integral of a function of many variables; curvilinear, double and multiple integrals; surface areas and volumes of figures and masses of bodies. It can be used to solve problems of mechanics and engineering.
17	Ordinary differential equations - MAT110	 Purpose: formation of basic knowledge on the sections of the theory of ordinary differential equations (ODES), formulation of problems and methods of solutions. Summary ODE of the 1st order. The Cauchy problem. An ODE of higher orders. ODE systems. Linear odes with variable coefficients. Numerical integration of ODES and ODE systems. Using Matlab for numerical solution of ordinary differential equations. 	5	Knowledge of the basics and methods of solving ODES; the ability to build mathematical models of mechanics and engineering problems described by the ODE; the ability to solve problems described by the ODE using both analytical and numerical methods using Matlab.
18	Mathematical analysis IV - MAT172	 Purpose: to provide basic knowledge on differential and integral calculus of functions of many variables. Summary Differential and integral calculus of a function of many variables. Curvilinear, double and multiple integrals; surface and volume integrals; mean value theorems; Fourier series and integrals. 	5	Ability to operate scalar and vector functions; calculate the gradient of a scalar function, divergence and rotor of vector functions; use knowledge of vector analysis and tensor analysis elements to solve problems of mechanics and engineering.

		Applications of differential and integral calculus of functions of many variables in mechanics and engineering.		
19	Equations of mathematical physics – MAT448	Purpose: The main topics of the course are: linear and quasi-linear partial differential equations, hyperbolic equations and some methods of their study, elliptic partial differential equations, some qualitative properties of their solutions, weak solutions, classical solutions, Poinre-Perron method, parabolic method. Summary Differential and integral calculus of a function of many variables. Curvilinear, double and multiple integrals; surface and volume integrals; mean value theorems; Fourier series and integrals. Applications of differential and integral calculus of functions of many variables in mechanics and engineering	5	Knowledge of the concepts and ideas of UMF; the ability to build mathematical models of simple engineering problems described by UMF; the ability to select methods sufficient for their research and obtain analytical or numerical results.
20	Engineering and computer graphics - GEN177	Purpose: to teach students the methods and means of machine graphics and graphical modeling of geometric objects. Summary Concepts of computer graphics, geometric modeling, graphic object, interactive graphic system for solving problems of automation of drawing and graphic works on the example of AutoCAD. Methods of obtaining certain graphical models of space based on orthogonal projection and the ability to solve problems related to spatial forms and relationships on these models.	5	Ability to apply methods of graphical representation of objects of engineering mechanics, mechanical engineering; willingness to use modern means of computer graphics, in engineering mechanics; ability to participate in the development of design and working design documentation in accordance with regulatory documents.

21	Statics and	Purpose: familiarization with various	5	The ability to apply fundamental laws of nature and basic physical laws in
21	Kinematics	properties of forces and conditions of	5	the field of mechanics for the study of static problems of engineering
	GEN/00	equilibrium formation of scientific		mechanics
	ULIN407	foundations of knowledge of the laws of		Ability to build adequate mathematical models of static problems:
		nature related to the conditions of		Analyze the received decisions and draw conclusions and develop
		equilibrium of bodies		appropriate recommendations
		Summery		appropriate recommendations.
		A system of converging forces. The		
		theory of moments. The main theorem of		
		statics Arbitrary plane system of forces		
		Friction Arbitrary spatial system of		
		forces. The center of gravity of the body		
		Kinematics of a point The simplest		
		movements of a rigid body Plane-		
		parallel motion of a rigid body. Thate		
		point movement		
22	Dynamics -	Purpose: familiarization with the main	5	The ability to apply fundamental laws of nature and basic physical laws in
	GEN198	types of motion of mechanical systems	U U	the field of mechanics for the study of dynamic problems of engineering
		and the formation of scientific		mechanics.
		foundations for the knowledge of the		The ability to build adequate mathematical models of dynamics problems.
		laws of nature related to the movement		Ability and readiness to solve problems of dynamics by analytical and
		of material bodies under the action of		numerical methods. The ability and willingness to analyze the results
		forces.		obtained and summarize them.
		Summary		
		The dynamics of a material point and the		
		dynamics of a solid body. The basic laws		
		of motion and interaction of material		
		bodies. The concept of oscillatory		
		motion of various mechanical systems.		
		Analysis of the conditions of stability of		
		equilibrium and motion of material		
		objects, methods for solving the		
		corresponding equations.		

23	Chemistry -	Purpose: formation of knowledge on	5	Ability:
	CHE495	fundamental issues of general chemistry		to navigate the basic concepts of chemistry, properties of elements-
		and skills of their application in		nonmetals and metals of groups of the periodic system;
		professional activity.		to make chemical equations describing mass transfer processes;
		Summary		make calculations using basic chemical patterns.
		Laws, theoretical propositions and		
		conclusions that underlie all chemical		
		disciplines; properties and relationships		
		of chemical elements based on the		
		periodic law of D.I.Mendeleev and on		
		modern ideas about the structure of		
		matter; fundamentals of chemical		
		thermodynamics and kinetics; processes		
		in solutions; the structure of complex		
		compounds.		
24	Theory and	Purpose: familiarization with general	5	The ability to independently compile structural and kinematic schemes of
	Design of	methods of analysis and synthesis of		mechanisms.
	Mechanisms	mechanical systems, mastering general		Possession of general (standard) methods and algorithms for the analysis
	and Machines -	methods of studying the structure,		and synthesis of mechanisms and systems formed on their basis.
	GEN413	geometry, kinematics and dynamics of		Willingness to participate in the collection and analysis of initial data for
		typical mechanisms and machines.		the design of equipment elements and objects of activity in general using
		Summary		regulatory documentation and modern methods of information retrieval and
		The basic concepts of machine elements		processing.
		and the main types of mechanisms.		
		Structural analysis and synthesis of		
		mechanisms. Kinematic analysis of		
		mechanisms with lower pairs.		
		Dynamics of machines and		
		mechanisms. Synthesis of mechanisms.		
		Designing mechanisms with the		
		required properties.		
25	Engineering	Purpose: familiarization with the basic	5	Ability and ability: to carry out thermodynamic calculations of heat
	Thermodynami	laws and regulations of thermodynamics		exchange systems; to design and select systems for heat supply of buildings
	cs GEN199	in relation to the tasks of power		and structures;

		engineering and thermal power		to carry out thermal calculations on licensed software
		engineering		
		Summary		
		Basic concepts of thermodynamics. The		
		first law of thermodynamics		
		Application of the first law of		
		thermodynamics to ideal gases. The		
		second law of thermodynamics		
		Application of the second law of		
		thermodynamics to analysis Heat-nower		
		gas cycles Thermodynamic potentials		
		and differential equations of		
		thermodynamics Properties of real gases		
		and vapors Cycles of refrigerating		
		machines and heat numps		
26	Numerical	Purpose introduction to the basics of	5	Skill
20	Methods and	programming methods and algorithms	5	to develop algorithms and programs for solving computational problems.
	Programming -	of calculation methods of numerical		numerically differentiate and integrate analytical or tabular functions:
	GEN414	solution of algebraic and ordinary		numerically find the roots of equations the minimum of functions.
	OLI (TIT	differential equations using computers		numerically solve algebraic and systems of algebraic equations:
		Summary		Numerically solve ordinary differential equations using Euler and Runge-
		Algorithms search algorithms data		Kutta methods
		processing algorithms arithmetic		
		algorithms Examples of unstable		
		algorithms and sensitivity of problems to		
		initial conditions. Approximation of		
		functions. Numerical differentiation and		
		integration.		
		Numerical solution of systems of		
		algebraic equations. Numerical solution		
		of ordinary differential equations by		
		Euler and Runge-Kutta methods.		

27	Fluid	Purpose formation of knowledge on	5	Ability
- /	Mechanics -	fundamental issues of fluid mechanics		to apply the basic laws of statics kinematics and dynamics of liquids and gases
	GEN404	and acquisition of skills in applying the		in solving engineering problems.
	GLITTOT	acquired knowledge and methods to		to distinguish between the modes of fluid flow and to select methods of solution
		solve practical engineering problems		in applied problems for the calculation of the movement of liquids and gases:
		Summary		independently build the appropriate calculation scheme and find the optimal
		The continuity hypothesis: hydrostatics		solution to the task
		Kinematics of the flow field:		
		conservation of mass Equations of fluid		
		motion Bernoulli's theorem Vortex-free		
		and vortex-free flow of incompressible		
		inviscid fluid Flows of viscous		
		incompressible fluid Turbulent flow		
		calculation methods		
28	Solid	Purpose: formation of knowledge on the	5	Ability:
-0	Mechanics -	theoretical foundations of deformable	5	to determine stresses, deformations and displacements in a solid elastic
	GEN405	solid mechanics, instilling skills in		body:
	0211100	solving practical problems of mechanics		make calculation schemes:
		and engineering.		make basic equations and apply methods of elasticity theory to solve
		Summary		applied problems:
		Stress theory. Theory of deformations.		analyze the stress state at dangerous points and correctly apply the basic
		The complete system of equations of the		hypotheses of the classical theory of elasticity:
		theory of elasticity. Methods for solving		
		problems of elasticity theory. The		
		simplest inversely symmetric problems		
		of elasticity theory (torsion of rods).		
		Approximate methods for solving		
		problems of elasticity theory.		
		Axisymmetric problems and non-		
		axisymmetric problems. Theory of		
		bending of thin plates.		
29	Numerical	Purpose: introduction to numerical	5	Ability:
	Methods for	methods for solving equations of matter		to choose the optimal method of numerical solution of a specific problem
	Solving	transfer and stationary and non-		of matter transfer and diffusion, problems described by elliptic equations;

	Engineering	stationary thermal conductivity in		build a numerical model of the problem;
	Problems -	relation to problems of engineering		develop a computer program and perform calculations;
	GEN415	mechanics.		analyze the results and validate the model, if necessary, adjust the
		Summary		numerical and/or computer models.
		Finite-difference methods for solving the		
		equation of matter transfer and diffusion.		
		The concept of stability and convergence		
		of the scheme. Explicit and implicit		
		schemes. Iterative methods for solving		
		elliptic equations. Implementation of		
		initial and boundary conditions. Strategy		
		and tactics of numerical solution of		
		engineering mechanics problems.		
30	Design of	Purpose: to gain knowledge in the field	5	Having the ability to solve standard problems of engineering mechanics.
	Mechanical	of engineering design of various types of		Ability to model technical objects and technological processes.
	systems	mechanical systems using modern		Knowledge of the methodology for designing mechanical systems using
	GEN-420	computer programs.		standard packages and computer-aided design tools and the ability to apply
		Summary		them in practice.
		The latest computer modeling tools,		The ability to use new knowledge and skills in practical activities.
		finite element methods, optimization		
		methods and methods of analysis of		
		many-body systems. Design of		
		mechanical systems using standard		
		packages and computer-aided design		
		tools Stress calculation, evaluation of		
		deflections, static failures, loss of		
		stability of structural elements under		
		combined loads.		
31	Thermal	Purpose: to gain knowledge in the field	5	Ability
	system design	of designing energy efficient thermal		to apply mathematical methods in system modeling of thermal installations;
	– GEN460	and ventilation systems.		apply modern computer technologies and programs for the calculation and
		Summary		selection of thermal systems;
		Design of thermal and ventilation		apply TRNSYS and EES software in the calculation and selection of
		systems: Economic calculations for		component equipment for thermal systems;

		engineering systems. Modeling of thermal and ventilation systems. Optimization of thermal and ventilation installations. Mathematical modeling- thermodynamic parameters. Dynamic behavior of thermal and ventilation		design thermal systems.
		systems. Solar heating and hot water		
		renewable electricity		
		Cycle of basic di	sciplines Ele	ective component (Elective)
32	Statistical Mechanics – GEN185	Objective: to form the scientific foundations of a probabilistic approach to the calculations of structural elements for strength, reliability, stability. Summary Determination of probabilistic characteristics of processes, mastering statistical methods for calculating systems, the main provisions of the theory of random processes, methods for analyzing random oscillations of mechanical systems, drawing up mathematical models for calculating machine elements, mechanisms and machine units under the action of random loads, carrying out calculations of reliability and trouble-free operation of systems.	5	Ability to perform calculations of reliability and uptime of systems; determine the probability of failure-free operation of mechanical systems; formulate your own conclusions and justify them. Ability and willingness to apply practical methods of the fundamentals of statistical mechanics and reliability theory; use the studied material in your subject area; use information technology to solve statistical mechanics problems; analyze the results obtained and summarize them.
33	The Strength and Reliability of Machines - GEN407	Purpose: teaching the basics of the science of strength and reliability of materials, structures and machines, preparing him for the correct choice of calculation and design methods. Summary The main provisions of the science of the strength of materials and	5	Ability to design structures of machines and mechanisms; to analyze the necessary information, technical data, indicators and results of work, their generalization and systematization; to carry out the necessary calculations using modern technical means when calculating the strength and reliability of machines.

		structures, methods of calculation and design for the general case of the action of forces, calculation of statically indeterminate systems, dynamic action of forces, calculation of structural elements beyond the limits of elasticity, positions and dependences of reliability, reliability according to basic criteria, calculations of reliability of machine parts of individual groups.		
		Cycle of profi	ile discipline	es University component
34	Strength of Materials - GEN426	Purpose: to teach the basics of the science of strength, rigidity and stability of materials and structures, to prepare for the correct choice of calculation methods and design of various structures. Summary The laws and theoretical propositions that underlie the mechanics of a deformable solid. Methods of calculation of structural elements for strength, rigidity and stability, methods of calculation and design in the general case of the action of forces, dynamic action of forces, calculation of structural elements	5	Proficiency in the experimental study of the mechanical properties of materials, the stress-strain state of the simplest structural elements. Ability to handle modern testing machines and measuring equipment; accurately and thoroughly argue the course of reasoning, without cluttering it with unnecessary details; apply the studied material in various fields of engineering.
35	Engineering Materials - GEN402	Purpose: familiarization with the structure and mechanical properties of metallic and non-metallic materials. Summary The structure of materials. Crystallization and structure of metals and alloys. Mechanical properties of materials. Diagram of the state of alloys.	5	Knowledge of methods: determination of optimal and rational modes of heat treatment and hardening of materials; analysis of the causes of defects in materials; determination of the quality and condition of alloys based on the analysis of their structures.

		Structure, properties and heat treatment of iron-carbon alloys. Structural and tool steels and alloys. Non-ferrous metals and non-metallic materials.		
36	Machine Element Design - GEN419	Purpose: formation of the necessary initial knowledge base on the basics of theory, design calculation, design of parts and elements of machines, development and execution of design documentation. Summary The concept of machine parts and elements, the main issues of ensuring their operability. Study of general principles of design and construction, construction of models and calculation algorithms for typical parts and elements of machines, considering the main performance criteria, development of design skills.	5	Ability design elements of machines of the required purpose according to the specified output data; choose the most suitable materials for machine elements and use them efficiently; perform calculations of machine parts and components using reference literature and GOST standards. The ability to collect and analyze raw data for the design of machine elements using regulatory documentation and methods of information retrieval and processing.
37	Fundamentals of mechatronics - GEN444	Purpose:16-bitmicroprocessor,embedded computers, analog and digitaldevices, sensors, actuators, modelingandcontrolofelectromechanicalsystems,modelingofvariousmechatronic systems.SummaryThe concept of machine parts andelements, the main issues of ensuringtheir operability.StudyStudy of generalprinciples of design and construction,construction of models and calculationalgorithms for typical parts and elementsof machines, taking into account the	4	The ability and ability to design, model and manage modern mechatronic systems.

		main performance criteria, development of design skills.		
38	Basics of heat transfer - GEN418	Purpose: to form an idea about the physical nature of heat transfer processes, about theoretical, experimental and computational methods and methods for generalizing the results obtained, obtaining skills for solving applied problems. Summary Basic concepts of heat transfer mechanisms. Fundamental principles and laws of heat transfer. The main types and models of heat transfer in energy systems and their application to solve problems of engineering practice	5	Ability to carry out calculations of the thermal state of structural elements of thermal power devices; identify, formulate and solve problems related to heat transfer; perform calculations of heat transfer in energy systems; independently build a calculation scheme and find the right solution to the task.
39	Introduction to Robotics GEN421	Objective: to acquire skills in writing equations and programming kinematics, dynamics and sensing of robots, modeling, real-time control of robotic systems and manipulators. Summary Methods determination of the position and speeds of the robot links. Coordinate systems of the robot, recording the equations of forward and reverse kinematics of the robot. Recording of differential equations of robot motion, solution in Matlab. Control of the robot by trajectory and by force. Simulation of manipulators and robots.	5	The ability to apply methods for determining the position and speed of robot links in the Matlab environment, for calculating and designing robots. Willingness and ability to use information technologies, including modern computer tools, in robotics. The ability to design new works in mechanical engineering.

		Cycle	e of profile	disciplines Component of choice	
40	The finite	Purpose: to familiarize with the	4	Ability:	
	element	methodology of performing finite		to choose the type of finite elements with which the real construction	on will
	method in	element analysis in the Structure3D		be adequately modeled;	
	engineering-	automated control system environment.		to build a model of the projected object in three-dimensional space;	
	GEN441	Mastering the creation of an object		to divide the model into finite elements;	
		model in the ARM Strucmrc3D editor		perform the entire complex of necessary calculations; visualize the	results
		and using the three-dimensional ARM		obtained and correctly interpret them in order to make the right desi	gn
		Studio editor.		decisions.	
		Summary			
		The basic concept of the FEM. Creation			
		and calculation of models of structures			
		containing rod, plate and volumetric			
		finite elements in ARM STRUCTURE			
		3D. Using ARM STUDIO to create,			
		load and generate a finite element grid			
		of three-dimensional models. Modules			
		for calculation, analysis and design of			
		shafts and axles.			
41	Computational	Purpose: teaching methods of numerical	4	The ability to independently master and apply computational metho	ds and
	hydromechanic	solution of fluid flow problems arising in		computer-aided design for the effective solution of professional task	s;
	s -GEN439	various engineering devices.		ability to apply modern methods of computational fluid dynamics to	solve
		Summary		engineering problems;	
		Fundamentals of finite difference		the ability to analyze	
		methods. Methods for solving the vortex		the results and their generalization, and systematization, to carry out	
		transfer equation. Explicit and implicit		calculations using modern software packages to solve a wide range	of
		methods, boundary conditions.		engineering problems.	
		Numerical implementation of the			
		solution of the vorticity transfer			
		equation.			
		Methods for solving equations for the			
		current function are direct and iterative			
		methods, boundary conditions.			
		Numerical implementation of the			

		vorticity – current function equations. Finite–difference methods for solving the Navier–Stokes equations for physical variables.		
42	Dynamics of machines and its computer analysis- GEN159	Purpose: formation of ideas about the dynamic processes that take place during the operation of machines and mechanisms and taking them into account in the design. Summary Equivalent circuits and mechanical characteristics of machines and their drives. Laws of motion of machines with various mechanical characteristics. Questions of the theory of dynamics of machines with concentrated and distributed parameters. Ways to reduce dynamic loads. Computer analysis and synthesis of dynamic systems using the MATHCAD mathematical package.	5	The ability to apply theoretical, computational and experimental research methods, methods of mathematical and computer modeling in the process of professional activity. Knowledge of modern methods and means of conducting experimental research on dynamics and strength, stability, reliability, friction and wear of machines and devices.
43	Dynamic systems management - GEN189	Purpose: teaching the basics of the theory of control of dynamic systems. Summary Theory of management of technical objects, challenges dictated by the nonlinear dynamics of management processes, priority tasks and approaches to their solution. The development of control theory in the context of three periods of its formation: the period of classical Newton mechanics, the modern period and in the direction of the future role of control theory as a component of the process of creating self-managed	5	Умение Управление динамическими системами: Теория управления техническими объектами, вызовы, диктуемые нелинейной динамикой процессов управления, приоритетные задачи и подходы к их решению. Развитие теории управления в контексте трех периодов её становления: периода классической механики Ньютона, современного периода и в направлении будущей роли теории управления как составляющей процесса создания самоуправляемых объектов и технологий.

		objects and technologies.		
44	Machine Learning in Engineering - GEN190	Purpose: to familiarize with the basics of machine learning and its application in stochastic engineering problems. Summary Linear classifier and stochastic gradient. Neural networks: gradient optimization methods. Metric methods of classification and regression. The method of support vectors. Multidimensional linear regression. Nonlinear regression. Model selection criteria and feature selection methods. Logical classification methods. Deep neural networks. Neural networks with unsupervised learning.	5	Ability Machine learning in Engineering: Basic concepts and examples of applied tasks. Linear classifier and stochastic gradient. Neural networks: gradient optimization methods. Metric methods of classification and regression. The method of support vectors. Multidimensional linear regression. Nonlinear regression. Model selection criteria and feature selection methods. Logical classification methods. Deep neural networks. Neural networks with unsupervised learning.
45	Computational mechanics - GEN425	Purpose: to teach the construction of computer models of mechanical systems, numerical solution of continuum mechanics problems, computer engineering calculations of mechanics problems.	5	Ability The purpose of the discipline is to prepare specialists for the construction of computer models of mechanical systems, numerical solution of continuum mechanics problems, computer engineering calculations of mechanics problems.
46	3D printing of machine parts and elements – GEN438	Purpose: to familiarize students with the basics of additive technology and the main types of AI technologies. Summary The study of terminology and classification, characteristics of the AM technology market. Additive technologies and rapid prototyping, technologies and machines for growing metal products. Additive technologies and foundry, additive technologies and	6	Ability When compiling the program for this course, the following goals were considered: to familiarize students with the classification of additive technologies, to give general information about the main types of AM technologies, manufacturers of AM machines, development trends and examples of practical use of AM technologies in industry. The study of terminology and classification, characteristics of the AM technology market. Additive technologies and rapid prototyping, technologies and machines for growing metal products. Additive technologies and foundry, additive technologies and powder metallurgy, creation of machine elements.

		powder metallurgy, creation of machine elements.		
47	Mechanics of biofluids - GEN442	Objective: to study the structure, function and movement of mechanical aspects of biological systems using methods of mechanics. Summary Rheological properties of blood and issues of its modeling, biomechanics of large blood vessels, anatomy and histology of vessels, mechanical properties of biological tissues, features of the functioning of the vascular system in a living organism. Research and modeling methods.	6	Ability Rheological properties of blood and issues of its modeling, biomechanics of large blood vessels, anatomy and histology of vessels, mechanical properties of biological tissues, features of the functioning of the vascular system in a living organism.
48	Design of thermal and ventilation systems – GEN445	Purpose: to gain knowledge in the field of designing energy efficient thermal and ventilation systems. Summary Design of thermal and ventilation systems: Economic calculations for engineering systems. Modeling of thermal and ventilation systems. Optimization of thermal and ventilation installations. Mathematical modeling- thermodynamic parameters. Dynamic behavior of thermal and ventilation systems. Solar heating and hot water supply. Heating systems based on renewable electricity.	6	Ability Engineering design. Design of working systems. Economic calculations for engineering systems. Modeling of thermal systems. System modeling of thermal installations. Optimization of thermal installations. Mathematical modeling-thermodynamic parameters. Dynamic behavior of thermal systems. Modeling using methods of probability theory. Solar heating and hot water supply. Heating systems based on renewable electricity.
49	Renewable energy systems - GEN446	Purpose: formation of knowledge in the field of renewable energy sources and training in the skills of their use. Summary	6	Ability The volume of reserves of traditional energy carriers. Nuclear energy and the greenhouse effect. Solar radiation. Wind energy. Water energy.

The volume of reserves of traditional	Geothermy. Use of biomass. Hydrogen production, fuel cells and
energy carriers. Nuclear energy and the	methanization.
greenhouse effect. Solar radiation. Wind	
energy. Water energy. Geothermy. Use	
of biomass. Hydrogen production, fuel	
cells and methanization.	